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E Q U I L I B R I U M  C O N S T A N T  IN T H E  D I F F U S I O N  

T H E O R Y  O F  C H E M I C A L  R E A C T I O N S  

S. A.  R e s h e t n y a k  a n d  L.  A.  S h e l e p i n  UDC 530.16 

The co r r ec t  determination of the domains in the phase plane that correspond to the initial and final stages 
is important  to the construct ion of a diffusion model of a chemical reaction. In case [ 1 ] the sys tem state 
passes  a potential b a r r i e r  with a maximum considerably exceeding the temperature  of the medium, the r e a r -  
tion between the par t ic les  can be considered complete if the spacing between them is g rea t e r  than the coordi-  
nate corresponding to the position of the maximum of the potential function. The react ion rate is determined 
here by the probabili ty flux density through a "na r row place,"  the vertex of the potential ba r r i e r .  In the prob- 
lem of dissociat ion of a diatomic molecule, the situation is ra ther  different. The potential function U (x) of 
atom interaction in the molecule (its main electronic term) takes on a constant value equal to the dissociat ion 
energy, s tar t ing with a cer tain spacing xt. Although the atom interaction force vanishes for x ~ x  t and the 
atoms can be considered free,  it would be erroneous to a s se r t  that the dissociat ion reaction is completed upon 
removal  of the atoms to a distance equaI to xt, and its rate is given by the flux at the point x = x 1. The Kram-  
ers model to compute the dissociation rates of diatomic molecules was f i rs t  applied in [2] and it was shown 
that the values of the rate constants, which agreed cor rec t ly  with experimental  values, a re  not determined by 
the flux at the point x = x~ but by the flux at the point x =l, where l is a cer tain pa rame te r  equal, in o rde r  of 
magnitude, to the part icle  mean free path in the medium. However, the pa rame te r  l was not defined r igorously  
in [2J. 

The purpose of this paper  is to consider  the problem of atom associat ion in a diatomic molecule and to 
determine the equilibrium constants for di rect  and reverse  reactions,  f rom which the p a r a m e t e r  1 is found 
single-valuedly. 

Since the build-up process  for a Maxwell equilibrium velocity distribution for  reacting par t ic les  is more  
rapid as compared with the process  of Boltzmann coordinate distribution formation [2], we consider  the 
Smoluchowski equation in the segment [0, /] :  

OMo/Ot + OM1/Ox = O~ M1 = (~?)-I(KMo - -  TOMo/Ox),, (1) 

where M0(x, t) is the probabili ty density of detecting an atom at the distance x at the time t; Ms(x , t) ,  prob-  
ability flux density; K(x) =-OU/Ox, force of reacting atoms interaction; ~t, their  reduced mass;  and -/ and T, 
friction coefficient and the temperature  of the surrounding medium. 

Let us supplement (1) with the initial and boundary conditions 

Mo(x, O ) =  8(x.7- /); (2) 

MI(0,: t) = M~(/,: t) = 0,: (3) 

Moscow. Translated f rom Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 1, pp. 5-10, January -  
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where  5 (x) is the del ta  function. 

Condition (2) means  that  the reac t ing  a toms  a r e  at  a d i s tance  l at  the ini t ial  instant ,  and condit ion (3) 
c o r r e s p o n d s  to a " r e f l e c t i n g "  boundary  at  the point  x = l while it would be " a b s o r b i n g "  in the d i s soc ia t ion  
p r o b l e m  [ 2 ]. 

We will a s s u m e  the p r o c e s s  of a tom as soc i a t i on  into a molecu le  comple ted  if the spac ing  between them 
b e c o m e s  l e s s  than x 1. Here  the r ecombina t i on  ra te  cons tan t  equals  the p robab i l i ty  flux dens i ty  at  this point  
k = I M l ( x l ) I .  

Let  us use the a sympto t i c  solution,  in the t ime,  of  (1),  obtained in [2] with the boundary  condit ion (3) 
taken into account  at the point  x = 0: 

M o :  i - -so § .... 
(4) 

x 0 0 

where  x 0 is the spac ing  between the a toms  in the molecu le  that  c o r r e s p o n d s  to the m i n i m u m  of the potent ia l  
funct ion U (x), and f0 is a c e r t a i n  t ime-dependen t  p a r a m e t e r .  

At the point  x = l the boundary  condit ion (3) is equivalent  to conse rva t i on  of  n o r m a l i z a t i o n  of the d i s t r i -  
bution function 

l 

I Mo (x, t) dz = I. (5) 
0 

Substi tuting (4) into (5), we find a f i r s t - o r d e r  d i f fe ren t ia l  equation in f0, which yie lds  when solved with 
the initial condit ion f0 (0) = 0 

f0 ~ g-r(/)it  - -  exp (--t/c)],j (6) 
l 

~=-g-l(1)~exp(--~)~l(x)dx is the c h a r a c t e r i s t i c  t ime  of a tom a s soc i a t i on  into a molecule .  The f o r m -  where  
o 

ula for the probability flux density at the point x = x i hence has the form 

g (xl) eXp ( -  t/~). M1 (xi) = --  z ( 7 )  

0 

F o r  t imes  t << �9 the flux (7) is cons tan t  and y ie lds  the r ecombina t i on  ra te  cons tan t  

k = r g (xl) 

~7 i e:p (_. 7)dxSexp (7) g(x', dx' (S) 
0 ~r 

Let  us f i r s t  cons ide r  the ease  of r e l a t i ve ly  low t e m p e r a t u r e s  of the med ium governed  by the ineaual i ty  
exp ( - D / T ) l  << g (xl),  where  D is the d i s soc ia t ion  e n e r g y  of the molecu le .  

The in tegra l  in the n u m e r a t o r  of (8) equals  [2] 

g(xz) = o~-'(2nTl~t)~/~,j (9) 

where  w is the f r equency  of  a tom v ibra t ion  in the molecule .  

To compute  the in tegra l  in the denomina to r  of  (8) we s e p a r a t e  the domain  of in tegra t ion  into th ree  pa r t s :  
[0, x0], ix 0, x l ] ,  [xl, l ] .  The in tegra l  in the f i r s t  domain  is negat ive  and is ea s i ly  given an upper  bound in abso -  
lute value:  

U # , 

The following e s t ima te  



Xl ~:I 

S U U 1 

x 0 x 0 

is valid for  the integral  in the second domain. The integral  in the third domain yields the fundamental  cont r i -  
bution in the denominator  of (8) and equals 

i >! 1 (> -~ exp (-~ 7 d x  exp 7 g (x') dx '  + exp g (xl) (x - -  x 0 = exp - -  1 exp y g (x) d x  + f (x~) g ~ -5 
E 1 X0 

Substituting (9) and (10) into (8), we obtain 

k = 2 T l ( ~ y l  ~) = 2 Ta~N~/(97) ,  l = ((~N) -~. ( 11 ) 

Dividing ( ] l )  by N 2, we find the assoc ia t ion  constant  which is independent of the densi ty of pa r t i c les  in 
the surrounding medium 

kx = 2T~/(~?). (12) 

In the high-temperature range governed by the inequality 

exp ( - - D / T ) l  >> g(xl),: 

the e s t ima tes  for  the n u m e r a t o r  of (8) and the in tegra ls  of the denominator  for  the domains [0, x 0] and ix0, xl] 
a r e  the s ame  as for  low t e m p e r a t u r e s .  The integral  in the denominator  ove r  the third segment  [xl, 1] is evalu-  
ated as follows: 

x I Xl (,XO X I 

I 

=' " v (x~)~ ~ _ + ?  ? exp. ( - -  _D_T) l f e x p ( y ) g ( x ) d x + g  ~- exp ( - -  ~)  ----- (__ D). ~- ~" exp 

The integral  (13) yields the main contribution to the denominator  and the formula  for  the recombinat ion 
ra te  takes the fo rm 

�9 �9 k 6NTo ~ 

Comparing (12) and ( ]4) ,  we see that the a tom recombinat ion  ra te  into a diatomic molecule  changes its 
dependence on the molecule  f requency and vibrat ions ,  the densi ty N and the t e m p e r a t u r e  T of the surrounding 
medium as the t ransi t ion is made f rom compara t ive ly  low t e m p e r a t u r e s  of the medium to high t empe ra tu r e s .  

Now, let  us divide the diatomic molecule  d issocia t ion ra te  found in [2] by the assoc ia t ion  ra te ,  and le t  us 
find the equilibrium constant. Consequently, we obtain the identical expression for both low and high tempera- 
ture s: 

kD " o [ ~ l / 2 e x p ( D ) .  (15) 

On the o ther  hand, the equi l ibr ium constant  of the react ion  

A B + M ~ A + B , - ] - M  
hA 

can also be obtained in the fo rm of a rat io  between the par t ia l  functions of the reac t ing  par t i c les :  

k J k  A = Z c Z J Z ~ , .  (16) 

Let  us rep lace  the par t ia l  functions in (16) by the c l a s s i ca l  s ta t i s t ica l  in tegra ls  

D j . , o ,  
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1, A -~ B,: 

(2)A, = 2, A =/= B,, (17) 

where ti is the Planek constant and the sum of energies of sufficiently remote  atoms is taken as zero.  

After substituting (17) into (16), we have 

kD O) ~ 1/2 D 

Comparing (18) and (15), we find 

= (2)AB~X~,:  l = (aN)-1,: ( 19 )  

where x 0 is the equilibrium spacing between atoms inthe molecule A13, hence a agrees  in order  of magnitude 
with its geometr ic  dimensions and the hypothesis in [2] about the approximate equality of the pa rame te r  l to 
the length of the mean free path in the medium is correct .  

The rate constants were computed for a number of chemical react ions for the value (19) found for the 
pa rame te r  l, and the resul ts  are  compared with experiment. The friction coefficient was est imated f rom the 
formula [2]: 7 = u (7A/mA + ~/13/mB ), 7i = 61rrir//mi, i = A, ]3, where U is the v iscos i ty  coefficient of the 
medium whose value is presented in [3] as a function of the temperature  T, and r i and m i are  the radius and 
mass  of the i- th react ing part icle.  The geometr ic  dimensions of the par t ic les  and the pa rame te r s  cha rac te r i z -  
ing the potential of their  interaction are  taken from [4]. 

Results of the calculations are  presented in Table 1. The as te r i sk  on the symbol for the viscosi ty  coef- 
ficient means that it is obtained by l inear extrapolation of the experimental  data [3] into the domain of temper-  
atures being considered. If it is taken into account that in pract ice  it is often necessa ry  to know just  the o rder  
of magnitude of the react ion constants,  then the correspondence between the theoret ical  and experimental  data 
[5] is comparat ively  good. 
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